Definition

Hyperbaric oxygen therapy (HBOT) is breathing 100% oxygen while under increased atmospheric pressure.

Oxygen Chambers

When a patient is given 100% oxygen under pressure, hemoglobin is saturated, but the blood can be hyperoxygenated by dissolving oxygen within the plasma. The patient can be administered systemic oxygen via 2 basic chambers:

- **4** Type A, multiplace;
- **4** Type B, monoplace.

Both types can be used for routine wound care, treatment of most dive injuries, and treatment of patients who are ventilated or in critical care.

Multiplace chamber

Multiplace chambers treat multiple patients at the same time, generally with a nurse or another inside observer who monitors the patients and assists with equipment manipulation or emergencies. Patients in a multiplace chamber breathe 100% oxygen via a mask or close-fitting plastic hood. Multiplace chambers can usually be pressurized to the equivalent of about 6 atmospheres of pressure.

If a different mixture of gas (nitrogen or helium mixture) is desired, the mixture can be given, via the mask, to only the patient, not the employee. All equipment used with patients, such as ventilators and intravenous lines, is put into the chamber with the patient. Since the employee is breathing air during the treatment (not using a mask), his or her nitrogen intake must be monitored, as this presents a risk for problems similar to those sometimes developed by scuba divers (eg, decompression sickness [DCS]).

Rectangular hyperbaric chamber.

Interior of rectangular chamber.

Cylindrical multiplace chamber.

Monoplace chamber

A monoplace chamber compresses one person at a time, usually in a reclining position (see image below). The gas used to pressurize the vessel is usually 100% oxygen. Some chambers have masks available to provide an alternate breathing gas (such as air). Employees tend to the patient from outside of the chamber and equipment remains outside the chamber; only certain intravenous lines and ventilation ducts penetrate through the hull. Newer Duoplace chambers can hold 2 people; their operation is similar to that of a monoplace chamber.

Monoplace chamber.

Hyperbaric Physics and Physiology Physics of Hyperbaric Medicine

The physics behind hyperbaric oxygen therapy (HBOT) lies within the ideal gas laws.

- The application of Boyle's law (p₁ v₁ = p₂ v₂) is seen in many aspects of HBOT. This can be useful with embolic phenomena such as decompression sickness (DCS) or arterial gas emboli (AGE). As the pressure is increased, the volume of the concerning bubble decreases. This also becomes important with chamber decompression; if a patient holds her breath, the volume of the gas trapped in the lungs overexpands and causes a pneumothorax.
- Charles' law $([p_1 v_1]/T_1 = [p_2 v_2]/T_2)$ explains the temperature increase when the vessel is pressurized and the decrease in temperature with depressurization. This is important to remember when treating children or patients who are very sick or are intubated.
- Henry's law states that the amount of gas dissolved in a liquid is equal to the partial pressure of the gas exerted on the surface of the liquid. By increasing the atmospheric pressure in the chamber, more oxygen can be dissolved into the plasma than would be seen at surface pressure.

The clinician must be able to calculate how much oxygen a patient is receiving. In order to standardize this amount, atmospheres absolute (ATA) are used. This can be calculated from the percentage of oxygen in the gas mixture (usually 100% in HBOT; 21% if using air) and multiplied by the pressure. The pressure is expressed in feet of seawater (fsw), which is the pressure experienced if one were descending to that depth while in seawater. Depth and pressure can be measured in many ways; some common conversions are 1 atmosphere (atm) = 33 feet of seawater (fsw) = 10 meters of sea water (msw) = 14.7 pounds per square inch (psi) = 1.01 bar.

Hyperbaric Physiology

The table below summarizes the physiologic mechanisms of HBOT with their clinical application

Mechanism	Clinical application
Hyperoxygenation*	DCS/AGE
	CO poisoning
	Central retinal artery occlusion
	Crush injury/compartment syndrome
	Compromised grafts and flaps
	Severe blood loss anemia
Decrease gas bubble size	Air or gas embolism
Vasoconstriction †	Crush injury/compartment syndrome
	Thermal burns
Angiogenesis	Problem wounds
	Compromised grafts and flaps
	Delayed radiation injury
Fibroblast proliferation/collagen	Problem wounds
synthesis	Delayed radiation injury
Leukocyte oxidative killing ‡	Necrotizing soft tissue infections
	Refractory osteomyelitis
	Problem wounds
Reduces intravascular leukocyte adherence	Crush injury/compartment syndrome
Reduces lipid peroxidation	CO poisoning
	Crush injury/compartment syndrome
Toxin inhibition	Clostridial myonecrosis
Antibiotic overany	Necretizing soft tissue infections
Antibiotic synergy	Necrotizing soft tissue infections Refractory osteomyelitis

Additionally, evidence is growing that HBOT alters the levels of proinflammatory mediators and may blunt the inflammatory cascade. More studies are needed to further elucidate this complex interaction. As HBOT is known to decrease heart rate while maintaining stroke volume, it has the potential to decrease cardiac output. At the same time, through systemic vasoconstriction, HBOT increases afterload. This combined effect can exacerbate congestive heart failure in patients with severe disease; however, clinically significant worsening of congestive heart failure is rare.

Contraindications

As with most medical treatments, absolute and relative contraindications exist with the use of hyperbaric oxygen therapy (HBOT).

Absolute	Reason	Necessary Conditions Prior to HBOT
Contraindications	Contraindicated	
Untreated	Gas emboli	Thoracostomy
pneumothorax	Tension	
	pneumothorax	
	Pneumomediastinum	
Bleomycin	Interstitial	No treatment for extended time from use of
	pneumonitis	medication
Disulfiram	Blocks superoxide	Discontinue medication
	dismutase, which is	
	protective against	
	oxygen toxicity	
Doxorubicin	Cardiotoxicity	Discontinue medication
Sulfamylon	Impaired wound	Discontinue and remove medication
	healing	
Cisplatin	Impaired wound	No treatment for extended time from use of
	healing	medication

Absolute Contraindications to Hyperbaric Oxygen Therapy

Relative Contraindications	Reason Contraindicated	Necessary Conditions Prior to HBOT
<u>Asthma</u>	Air trapping upon ascent	Must be well controlled with
	leading to pneumothorax	medications
Claustrophobia	Anxiety	Treatment with benzodiazepines
<u>Congenital</u>	Severe hemolysis	None; HBOT for emergencies only
<u>spherocytosis</u>		
Chronic obstructive	Loss of hypoxic drive to	Observation in chamber
pulmonary disease	breathe	
(COPD)		
Eustachian tube	Barotrauma to tympanic	Training, PE tubes
dysfunction	membrane	
High fever	Higher risk of seizures	Provide antipyretic
Pacemakers or	Malfunction or deformation of	Ensure company has pressure-tested
epidural pain pump	device under pressure	device and learn to what depth
Pregnancy	Unknown effect on fetus	None, but HBOT may be used in
	(Previous studies from Russia	emergencies
	suggest HBOT is safe.)	
Seizures	May have lower seizure	Should be stable on medications; may
	threshold	be treated with benzodiazepines
Upper respiratory	Barotrauma	Resolution of symptoms or
infection (URI)		decongestants

Relative Contraindications to Hyperbaric Oxygen Therapy

Complications to Hyperbaric Oxygen Therapy

Barotrauma

Ear pain, fullness Muffled hearing Sinus pain or bleeding Tooth pain Dry cough Chest pain or burning Decreased vital capacity **Round or oval window blowout** Immediate deafness Tinnitus Nystagmus, vertigo, or both **Visual refraction change** Progressive myopia with prolonged number of treatments Clouding of vision

Oxygen toxicity Seizure

Seizure Dry cough Chest pain or burning Decreased vital capacity

muqdad fuad